昆虫是我们生态系统的关键部分。可悲的是,在过去的几十年中,他们的人数令人担忧。为了更好地了解这一过程并监测昆虫的种群,深度学习可能会提供可行的解决方案。但是,鉴于其分类法的广度和典型的细粒度分析障碍,例如与低类变异性相比,较高的类内变异性,昆虫分类仍然是一项艰巨的任务。很少有基准数据集,这阻碍了更好的AI模型的快速发展。但是,稀有物种培训数据的注释需要专家知识。可解释的人工智能(XAI)可以协助生物学家执行这些注释任务,但是选择最佳XAI方法很难。我们对这些研究挑战的贡献是三重:1)从inaturist数据库中取样的野生蜜蜂的彻底注释图像的数据集,2)在野生蜜蜂数据集中训练的重新网络模型,可在野生蜜蜂数据集上获得与类似的最新出手的分类分数。经过其他细粒数据集培训的模型和3)对XAI方法的研究,以支持注释任务中的生物学家。
translated by 谷歌翻译
尽管深度神经网络能够在各种任务上实现优于人类的表现,但他们臭名昭著,因为他们需要大量的数据和计算资源,将其成功限制在可用的这些资源的领域。金属学习方法可以通过从相关任务中转移知识来解决此问题,从而减少学习新任务所需的数据和计算资源的数量。我们组织了元数据竞赛系列,该系列为世界各地的研究小组提供了创建和实验评估实际问题的新元学习解决方案的机会。在本文中,我们在竞争组织者和排名最高的参与者之间进行了合作,我们描述了竞争的设计,数据集,最佳实验结果以及Neurips 2021挑战中最高的方法,这些方法吸引了15进入最后阶段的活跃团队(通过表现优于基线),在反馈阶段进行了100多次代码提交。顶级参与者的解决方案是开源的。汲取的经验教训包括学习良好的表示对于有效的转移学习至关重要。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
门控相机作为扫描LIDAR传感器的替代方案,具有高分辨率的3D深度,在雾,雪和雨中稳健。不是通过光子飞行时间顺序地扫描场景并直接记录深度,如在脉冲激光雷达传感器中,所设定的成像器编码在百万像素分辨率的少量门控切片中的相对强度的深度。尽管现有方法表明,可以从这些测量中解码高分辨率深度,但这些方法需要同步和校准的LIDAR来监督门控深度解码器 - 禁止在地理位置上快速采用,在大型未配对数据集上培训,以及探索替代应用程序外面的汽车用例。在这项工作中,我们填补了这个差距并提出了一种完全自我监督的深度估计方法,它使用门控强度配置文件和时间一致性作为训练信号。所提出的模型从门控视频序列培训结束到结束,不需要LIDAR或RGB数据,并学会估计绝对深度值。我们将门控切片作为输入和解散估计场景,深度和环境光,然后用于学习通过循环损耗来重建输入切片。我们依赖于给定帧和相邻门控切片之间的时间一致性,以在具有阴影和反射的区域中估计深度。我们通过实验验证,所提出的方法优于基于单眼RGB和立体图像的现有监督和自我监督的深度估计方法,以及基于门控图像的监督方法。
translated by 谷歌翻译
将机器人放置在受控条件外,需要多功能的运动表示,使机器人能够学习新任务并使其适应环境变化。在工作区中引入障碍或额外机器人的位置,由于故障或运动范围限制导致的关节范围的修改是典型的案例,适应能力在安全地执行机器人任务的关键作用。已经提出了代表适应性运动技能的概率动态(PROMP),其被建模为轨迹的高斯分布。这些都是在分析讲道的,可以从少数演示中学习。然而,原始PROMP制定和随后的方法都仅为特定运动适应问题提供解决方案,例如障碍避免,以及普遍的,统一的适应概率方法缺失。在本文中,我们开发了一种用于调整PROMP的通用概率框架。我们统一以前的适应技术,例如,各种类型的避避,通过一个框架,互相避免,在一个框架中,并将它们结合起来解决复杂的机器人问题。另外,我们推导了新颖的适应技术,例如时间上未结合的通量和互相避免。我们制定适应作为约束优化问题,在那里我们最小化适应的分布与原始原始的分布之间的kullback-leibler发散,而我们限制了与不希望的轨迹相关的概率质量为低电平。我们展示了我们在双机器人手臂设置中的模拟平面机器人武器和7-DOF法兰卡 - Emika机器人的若干适应问题的方法。
translated by 谷歌翻译
We address the challenge of building domain-specific knowledge models for industrial use cases, where labelled data and taxonomic information is initially scarce. Our focus is on inductive link prediction models as a basis for practical tools that support knowledge engineers with exploring text collections and discovering and linking new (so-called open-world) entities to the knowledge graph. We argue that - though neural approaches to text mining have yielded impressive results in the past years - current benchmarks do not reflect the typical challenges encountered in the industrial wild properly. Therefore, our first contribution is an open benchmark coined IRT2 (inductive reasoning with text) that (1) covers knowledge graphs of varying sizes (including very small ones), (2) comes with incidental, low-quality text mentions, and (3) includes not only triple completion but also ranking, which is relevant for supporting experts with discovery tasks. We investigate two neural models for inductive link prediction, one based on end-to-end learning and one that learns from the knowledge graph and text data in separate steps. These models compete with a strong bag-of-words baseline. The results show a significant advance in performance for the neural approaches as soon as the available graph data decreases for linking. For ranking, the results are promising, and the neural approaches outperform the sparse retriever by a wide margin.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
Efficient surrogate modelling is a key requirement for uncertainty quantification in data-driven scenarios. In this work, a novel approach of using Sparse Random Features for surrogate modelling in combination with self-supervised dimensionality reduction is described. The method is compared to other methods on synthetic and real data obtained from crashworthiness analyses. The results show a superiority of the here described approach over state of the art surrogate modelling techniques, Polynomial Chaos Expansions and Neural Networks.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译